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Abstract-The objective of this paper is to examine the effects of coordinate system on the accuracy
of corotational formulation for planar Bernoulli-Euler's beam. The corotational formulation has
often been introduced with a small strain assumption from the outset. A fundamental question,
therefore, has been raised as to whether or not the numerical solutions obtained approach the
solutions of a theory of finite strains with finite displacements. On the basis of the method proposed
herein, a theoretical study for convergence of numerical solutions is made by comparing the
approximated strains in the locally convected coordinates with the exact ones in the fixed global
coordinates. Then the effects oflocally convected coordinates on the accuracy of numerical solutions
are discussed. Numerical examples are demonstrated to show the validity of the present theoretical
results.

I. INTRODUCTION

In the finite element analysis for a large displacement problem of flexible beams, the total
Lagrangian formulation together with the fixed global coordinates has been used [e.g.
Crespo Da Silva (1988); Geradin and Cardona (1989); Iura and Hirashima (1985); Iura
and Atluri (1988); Iwakuma (1990); Reissner (1972); Simo and Vu-Quoc (1986)]. In this
formulation, even if the relative or elastic deformations of the body undergoing finite rigid
displacements are small, a highly nonlinear beam theory is indispensable for simulating the
motion of beams.

The use of the corotational formulation is motivated by the assumption of small strains
of the body undergoing the finite rigid displacements. On the basis of this assumption, a
linear theory or a higher-order theory has often been introduced in the locally convected
coordinates to derive the relations between the internal forces and the corresponding
deformations [e.g. Ai and Nishino (1980); Belytschko and Hseih (1973); Crisfield (1990);
Goto et al. (1975); Goto et al. (1987); Hsiao and Hou (1987); Iura and Iwakuma (1992);
Iwakuma et al. (1987); Jennings (1968); Maeda et al. (1974); Meek and Loganathan
(1989); Oran (1973); Powell (1969); Saafan (1963); Simo and Vu-Quoc (1986); Song and
Haug (1980); Tezcan (1968); Tezcan and Mahapatra (1969); Yang (1973); Yoshida et at.
(1980); Wen and Rahimzadeh (1983)]. The numerical solutions obtained show that the
corotational formulation is a powerful one for simulating a large displacement problem.
Very few papers, however, have been published to show the accuracy of the corotational
formulation from a theoretical point of view. Goto et al. (1987) have shown that the exact
solutions of equilibrium equations, which are derived in the locally convected coordinates
under a small strain assumption, approach the solutions obtained by a theory of small
strains with finite displacements. Since a small strain assumption has been employed from
the outset in the locally convected coordinates, the numerical solutions obtained by the
corotational formulation have been expected to approach the solutions obtained by a
theory of small strains with finite displacements.

In this paper, a new method is presented for the corotational formulation. On the basis
of the present method, we investigate the accuracy of the corotational formulation for
planar Bernoulli-Euler's beam. The study of accuracy is made by comparing the residual
or unbalanced forces derived by the corotational formulation with those by the exact
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theory. If the existing method is used for the study of accuracy, we must derive the
explicit expressions for the residual forces. Thus the comparison will be tedious work. The
advantage of using the present method is that the comparison is possible by simply deriving
the explicit forms for the strain components. Then the effects of coordinate system on the
accuracy of numerical solutions are discussed. The coordinate systems employed are the
secant coordinates and the tangential coordinates. It seems to be evident that the con
vergence of numerical solutions obtained by the secant coordinates is faster than that by
the tangential coordinates. A theoretical study, however, would be necessary to support
the above conclusion. It is noted that the converged solutions, obtained by the corotational
formulation under a small strain assumption, approach the solutions by a theory of finite
strains with finite displacements as the number of elements increases. This conclusion is
different from that of Goto et al. (1987). The numerical examples, analysed herein, for the
finite strain problems show the validity of the present theoretical results.

2. FORMULATION

2.1. EXisting formulation
We describe briefly an existing procedure for obtaining the numerical solutions with

the use of the tangent stiffness method [see Oran (1973)]. The relations between the basic
member forces {S} and deformations {u}, referred to as the locally convected coordinates,
are obtained as

{S} = {S(u)}.

The incremental relations are expressed from eqn (1) as

{~S} = [tH~u}'

(1)

(2)

where [t] is the local tangent stiffness matrix for relative deformations. The relations
between the member end forces {F} referred to the fixed global coordinates and the basic
member forces {S} are written as

{F} = [BHS}' (3)

where [B] is the instantaneous static matrix. The incremental values of the basic member
deformations {~u} are expressed, in terms of the incremental values of the member end
displacements {~v} referred to the fixed global coodinates, as

(4)

where the superscript T denotes transpose. The increment of {F} is expressed, with the help
of eqn (3), as

{~F} = [~BHS} +[BH~S}.

By using the relation such that [~BHS} = [gH~v} and eqns (2) and (4), we have

{~F} = ([B][t][B]T + [g]){~v}

= [TG]{~v},

(5)

(6)

where [TG ] is the global tangent stiffness matrix. Since the direct use ofeqn (6) for obtaining
the incremental solutions ~v leads to erroneous results, it is common to use the following
iterative procedure [see Bathe (1982)] :
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[TaJ1+1 {M}1 = {l1R}N+l

{l1R}1+1 = {Fh+! -[b(v)J1+1 {S(V)}1+1'
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(7)

where the subscript N denotes the load step, the superscript i the iteration counter and the
vector {l1R} is known as the residual or unbalanced force vector. The convergence rate of
numerical solutions depends on the tangent stiffness matrix, while the accuracy of numerical
solutions depends on the residual forces. Therefore, the explicit expressions for the residual
forces are necessary for studying the accuracy of numerical solutions as long as the above
method is employed.

2.2. Present formulation
The present formulation is briefly explained as follows. If the attention is confined to

configuration-independent loads, the total potential energy for the beam may be expressed
as

II = Ils+Ilr, (8)

where Ilsis the strain energy function and Ilr the potential function for external forces. Let
{u} denote the displacement components referred to the locally convected coordinates.
When the corotational formulation is employed, the strain energy function is expressed in
terms of {u} as

Ils = Ils({u}). (9)

From geometrical consideration, we will obtain the relationship between {u} and the
displacement components {v} referred to the fixed global coordinates. This relationship
may be expressed as

{u} = {h({v})}, (10)

where h is a nonlinear function of {v}. Substituting eqn (10) into eqn (9), we obtain the
strain energy function which is expressed in terms of {v} as

Ils = Ils({h({v})}). (II)

Since the potential function Ilr for external forces can be expressed also in terms of {v}, the
total potential energy is expressed in terms of {v}. Hence, following a standard procedure,
we obtain the equilibrium equations of the beam element referred to the fixed global
coordinates, expressed as

(12)

where {vm } denotes the independent variables at each node. When the Newton-Raphson
method is employed, the tangent stiffness matrix and the residual force vector are written
as

{l1R} = _ {all}.oVm
(13)

It is noted that the resulting global tangent stiffness matrix is always symmetric regardless
of the magnitude of deformations.

Wen and Rahimzadeh (1983) have presented a similar formulation in which the tangent
stiffness matrix and the residual force vector are expressed as
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(14)

where TI* denotes the total potential energy which is the function of {u} referred to the
locally convected coordinates. From a mathematical point of view, eqn (14) is equivalent
to eqn (13) as long as consistent formulation is employed. It is noted, however, that when
the strain energy function or the kinematic relations between {u} and {v} are approximated,
eqn (14) does not always lead to the same tangent stiffness matrix as that derived from eqn
(13).

The advantage of using eqn (B) instead of eqn (14) becomes clear when the residual
force vector derived by the corotational formulation is compared with that by the total
Lagrangian method. If eqn (14) is used, the comparison becomes possible only when the
explicit expressions for the residual force vector are given, though it is cumbersome to
derive the residual force vector. When eqn (13) is used, on the other hand, the comparison
is possible without deriving the explicit expressions for the residual force vector, but is
easily carried out by simply deriving the explicit form for the potential energy. When the
corotational formulation is used, the strain energy function is often approximated. It is
enough, therefore, to compare the strain components derived by the corotational for
mulation with those by the total Lagrangian method.

3. BASIC EQUATIONS

There are a variety of choices to define the locally convected coordinates. Figure l(a)
shows the commonly used coordinate system, called the secant coordinate system, in which
the end nodes of the element after the deformation are connected by the x axis. Figure 1(b)
shows the coordinate system, called the tangential coordinate system, in which the x axis is
taken as the tangent to the beam axis. In the latter coordinate system, no reciprocal of
trigonometric functions appears to simulate the motion of planar beams undergoing finite
rotations. Although there are other choices for the coordinate system, the above two
coordinate systems are employed herein to investigate the effects of coordinate system on
the accuracy of numerical solutions.

The strain energy function for Bernoulli-Euler's beam may be expressed as [e.g.
lwakuma (1990); Reissner (1972)]
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(' [EA EI ]ns = Jo 2 (e)2 + "2 (K)2 dx,
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(15)

where e is the axial strain, K the curvature, EA the axial stiffness, EI the flexual stiffness and
I the length of the undeformed beam axis. The displacement components in the fixed global
coordinates are denoted by d, V, dv = V, A <I> and .leo = <1>0' In the locally convected
coordinates, the displacement components are denoted by dx = u, d}' = v, .Ie = cf> and Ao = 0
for the secant coordinate system, and d, = ii, d}' = V, A= cP and Ao = 0 for the tangential
coordinate system. The exact strain components are expressed in terms of the displacement
components as (Reissner, 1972)

e = {(d~ + cos Ao)2 + (d;. + sin Ao)2} 1/2_1

d;(d~+cos .leo) -d~(d;.+sin .leo)
K= ,

(d~ +cos Ao)2 + (d'y +sin Ao)2
(16)

where ( )' denotes d( )/dx. According to Reissner (1972), the following kinematic relation
ships are obtained:

(l+e)sin.le = d;,+sinAo

(l+e)cosA = d~+COsAo.

In view of eqns (16) and (17), the strain components are rewritten as

e = (d~ +cos Ao) COS.le+ (d;, + sin Ao) sin A-I

K = (d; cos A-d~ sin J)/(l +e).

(17)

(18)

Note that eqns (16)-(18) hold for both the fixed global and locally convected coordinates.
Let ( ); and ( )j denote the values at the nodes i andj of the beam element, respectively.

According to the definition of the secant coordinate system, the non-zero values at the
nodes i and j are cf>i> uj and 4>j' The relationships between the nodal displacement components
and the total displacement components are expressed as [see Fig. lea)]

where

cos () = (Vj Vi + I cos <1>0)/(1+ Uj)

sin () = (Vj Vi+l sin <l>o)/(l+u;)

l+uj = [(Uj - Vi+lcos <l>0)2+(Vj - Vi+lsin <1>0)2)1 /2

(19)

(20)

and () = <I> - 4>.
According to the definition of the tangential coordinate system, the non-zero values at

the nodes i and j are iij, vj and cPj' Geometrical consideration leads to the following
relationships [see Fig. I(b») :
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IUl [Cd
sin <Pi r) U,+[ COS~, [COS ~'Ili ~ -s~~, cos <Pi o Vi Vi + 1sin <Po -I sin <Pi , (21 )

0 I i <l>j-<I>i ,,

where <Pi = <I> - ¢. The relationships between <l>i and the displacement components are
obtained as

ffi (Vj - Vi+1 cos <l>o)(l+tl)+ (Vj - Vi+1 sin ello)Vj
cos 'Vi =. .' .

U+uY + (Vj )
2

• ffi (Vj - V" + 1sin <l>o)(l+uj ) -(Vj - Vi+1 cos ello)Vj
sm 'V. = .

( (/+U)2+(VY .
(22)

For later convenience, we consider the shape functions which will be used for the
finite element implementation. When the inconsistent shape functions are used, the strain
components are not invariant under the transformation of coordinates. The conditions
which yield the invariant strain components are expressed, with the help of eqn (18), as

V' +cos ello = (u' + 1) cos 8-v' sin e
V' + sin <1>0 = (u' + I) sin () + v' cos 0

for the secant coordinate system and

V' +cos ello = (u' + l)cos elli -6' sin <1>"

V' + sin ello = (it' + I) sin elli + 0' cos <l>i

(23)

(24)

for the tangential coordinate system. It follows from eqns (23) and (24) that the order of
d, should be the same as that ofd1" Therefore, when a cubic polynomial is used to interpolate
d,., dx must also be interpolated by a cubic polynominal. To determine the coefficient of
shape functions, the kinematic relations expressed by eqns (17) should not be violated. The
cubic shape functions which satisfy the kinematic relations are written as

dx = II d'i+ I2 d,j + I3 {(l +e;) cos Ai -cos ,10} +f~ {(1 +e) cos A)-COS A.o}

dv = II dl'i +f;d':f + f~ {(l +ei) sin Ai-sin Ao} + I4 {(l + eJ sin I.j-sin Ao}, (25)

where II to I4 are given by

. 3x2 x'
f = 1--+2
. 1 [2 P

(26)

When the above shape functions are used, the axial strain e at each node joins in the degrees
of freedom in addition to d", dy and L The increase of the number of degrees of freedom
makes the element expensive. Furthermore, a special technique is needed for the trans
formation of e. It is common. therefore, to use a linear shape function for u and 11 and a
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cubic shape function for v and e, The conventional shape functions used in the corotational
formulation are expressed as

eft = (1-7)dxi +7dxJ

dy = fld"i+ f2 dl'j+ f3 Ai+ f4 Aj. (27)

It should be noted that the use of the conventional shape functions does not lead to the
invariant strain components.

4. ACCURACY OF COROTATIONAL FORMULATION

In this section we consider the accuracy of corotational formulation in which a linear
theory is introduced to describe the relative motion. It is well known that the accuracy of
numerical results depends on the residual forces used. When the residual forces derived by
the corotational formulation approach that by an exact theory, the resulting numerical
solutions may approach those obtained by the exact theory, Therefore we will compare the
residual forces in the locally convected coordinates with that derived by an exact theory in
the fixed global coordinates. As shown in Section 2.2, as long as the present method is used,
the explicit forms of the residual forces are unnecessary for the comparison of the residual
forces. It is enough for the present study to compare the approximated strain in the locally
convected coordinates with the exact ones in the fixed global coordinates.

In Section 4.1 we compare the linear strains in the secant coordinate system with the
exact ones in the fixed global coordinate system. Comparison is made in Section 4.2 between
the linear strains in the tangential coordinate system and the exact ones in the fixed global
coodinate system. In what follows, for the sake of brevity, <1>0 is taken as 0 without losing
generality.

4.1. Secant coordinate system
In the secant coordinate system, a linear theory yields the relationships between the

strain and displacement components, expressed as

u
[;1 = ul = j

reI v" = (-7+ ~n~i+( -~+ ~:)~j' (28)

where the conventional shape functions of eqn (27) are used.
First, we consider the accuracy ofthe axial strain. Substituting eqn (19) into eqn (28a),

we have

(V.-U) (v- V)
eI = _J-,-' + 1 cos e+ J, 1 sin e- 1.

In view of eqns (20), (28) and (29), we obtain

(1 )2 = (Vj
- Vi 1)2 (~- Vi)2+[;1 ,+ + , .

(29)

(30)

With the help of eqn (16a), the exact axial strain is written, in terms of the displacement
components in the fixed global coordinates, as
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(31)

When the forward difference is used to approximate V' and V', we have V' = (Vj- Vi}11
and V' = (Vi - Vi )//. Then we obtain 8\ = e. The accuracy of 81 is, therefore, the same as
that of the forward difference; the accuracy of Sj is 0(1). The accuracy of the forward
difference has been established [e.g. Atkinson (1978)]. It is expected, therefore, that 8j

approaches 8 as the number of elements increases.
Second, let us consider the accuracy of the curvature, the exact form of which is given

byeqn (16b) or (18b). Since it is difficult to compare eqn (28b) with (16b) or (lSb) directly,
we introduce the consistent shape functions of eqns (25) into eqn (ISb). Then we have

K = (_~+ 6X)(1+8;)Sin(¢t'-¢)+(1+8 j )Sin¢
c I [2 l+s

where the subscript c is used to show that the consistent shape functions are introduced
into the exact relationship between strain and displacement components. As will be shown,
the use of Kc gives a satisfactory rate of convergence for the finite element solutions.
Therefore, Kc may be used as a precise curvature. As stated before, the neglect of the terms
of order higher than OW) leads to 8 = 81, In this case the axial strain becomes constant so
that 8 = Sf = Sj' Then the curvature Kc takes the form

Since ¢ = eIl-e, we have

sin¢= 1 [v,(VJ-Vf+l)_(VI+1)(Vj-V;)]. (34)
(l+s)(l+sd I I

When the forward difference is used to interpolate V' and V', the right-hand side of eqn
(34) becomes zero. Therefore, within the accuracy of OW), we may assume that sin ¢ ~ ¢.
Since the order of ¢i and ¢i is the same as that of ¢, we may have the relations that
sin (¢j-¢) ~ ¢j-¢ and sin (¢;-¢) ~ ¢j-¢. Substituting these approximations into eqn
(33) and comparing the resulting equation with eqn (28b), we have Kc = Kl'

When [ becomes very small, the forward difference may lead to good approximation
for V' and V'. Then we will have the relations that 81 ~ 8 and Kj ~ K c ' Thus it is concluded
that the numerical solutions obtained by 81 and KI approach the solutions of the exact
theory as the number of elements increases.

4.2. Tangential coordinate system
When the tangential coordinate system is used, a linear theory yields the relationships

between the strain and displacement components, expressed as

(35)

where the conventional shape functions ofeqn (27) are used. Substituting eqn (21) into eqn
(35), we have
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(
U'-U) (v- V)SI = _J_,_' + 1 cos <]);+ - Jl I sin <]);-1

First, we consider the accuracy of SI' Using eqns (22), (35a) and (36a), we obtain

2801

(36)

(37)

When UI and VI are assumed to be evaluated correctly by the forward difference, it is
found from eqns (31) and (37) that the last term on the right-hand side must vanish to
yield St = e. This condition may be written in the following form :

(
Uj - U;)2 (Vj_V;)2 (~)2
l' l »l' (38)

Since (Uj - U;)!l or (Vj - ~)!' can be small, it is difficult to say whether or not the above
relation holds. We consider, therefore, another estimation for the accuracy of et which
follows.

The exact axial strain is rewritten, with the help of eqns (ISa) and (21), as

e = ~[(UI+ l)cos<I>;+ VI sin <I>;]-l.
cos 4>

(39)

It follows from eqns (36a) and (39) that we have Sl ~ e when the following approximations
hold:

The last two approximations denote the forward difference of UI and VI, while the first
approximation holds when 1 » (l$)'t. By expanding <I> into Taylor's series at <1>;, we have

Since l$ = <])-<]); = x<I>;+O(x2), the relation 1 » (tP)2 holds when the second-order term of
Taylor's series of <I> is assumed to be small. This assumption may hold as the number of
elements increases, yet is more strictthan that used in the forward difference. Therefore, in
order to obtain it ~ e, we need a more strict condition than that used to obtain el ~ e; the
rate of convergence for Sj is slower than that for ej _

Second, we consider the accuracy of Kl' It is difficult again to compare eqn (36b) with
(16b) or (ISb) directly. We introduce, therefore, the consistent shape functions of eqn (25)
into eqn (I8b), and obtain

(
6 12x) . costP

Kc = -2 - - [(Jij- ~)cos<I>;-(Uj-U;+l)sm<I>tl-
l
-

l r +e

(
2 6X)[1 +e} . 1+SI . ] ( 4 6X)(SI -e;) ~+ - - + - -- sm (<1>,-<1»+ -- sm (<1>-<1» + - - + - -- sin cP'
l P 1+e I 1+e I l [2 1+8

(40)
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Fig. 2. Convergence of FE solutions of a cantilever beam subjected to end force.

Let us assume that 6:::::; el holds. Then the axial strain becomes constant so that we obtain
£ :::::; iii :::::; £; :::::; £j' Thus the curvature K" takes the form

K = (£ _12X)[(V
" [2 f3 J

(41)

It follows from eqns (36b) and (41) that the following assumptions in addition to t: :::::; Sl
should hold to yield KI :::.::: Kc :

clo:: :::::; 1, sin (¢ij -$) :::.::: %-$, sin ($-$;) :::.::: $-$i(= 4»).

Since the order of$j is the same as that of CP;, the order of ¢ij -$ is the same as that of 4).
The last two approximations, therefore, may hold when 1 » (4)f. In order to satisfy the
first approximation, a small axial strain assumption in addition to 1 » (4»)2 must be
introduced. From a theoretical point of view, therefore Kl does not approach Kc when the
axial strain cannot be neglected in comparison with unity. In most ofthe problems, however,
the order of6is 0 (10- 2 .- to-I) at the most. In this case, "1 will approach 1(." as the number
of e1ementsincreases. According to the numerical experiments, the solutions obtained by
81 and "1 approach the exact solutions of a finite strain theory even in the finite strain
problems. The rate ofconvergence for those numerical solutions is slower than that obtained
by 61 and "I'

5. NUMERICAL EXAMPLES

Several numerical examples are considered in this section to confirm the theoretical
results discussed above. The strain energy function is integrated exactly except for t:" and
1(." in which the numerical integration method is used. The full Newton-Raphson method
is used with the arc length method. The iteration is terminated if the Euclidean norm of the
unbalanced forces is less than the prescribed value.

5.1. Cantilever subjected to vertical force
As the first example, we consider the cantilever beam subjected to the end force, as

shown in Fig. 2. The slenderness ratio of the beam is taken as 100. The converging processes
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Fig. 3. Convergence of FE solutions of a beam with hinged ends.

of the finite element solutions for end deflections of the beam with PI2lEI = 10.0 are shown
in Fig. 2. The numerical solutions obtained by ee and Ke show excellent accuracy. These
strain components, therefore, may be regarded as precise ones. As expected, the convergence
rate of numerical solutions obtained by 81 and Kl is slower than that by el and K1• It should
be noted that all of the numerical solutions approach the exact solution as the number of
elements increases.

5.2. Beam with hinged ends
The second example is the beam with hinged ends, as shown in Fig. 3. The concentrated

force is applied at the center of the beam. The slenderness ratio of the beam is 100. Because
ofsymmetry only halfis discretized. The converging processes of the finite element solutions
for center deflection of the beam with PP lEI = 10.0 are shown in Fig. 3. The converged
solutions coincide with exact solutions obtained by Goto et al. (1990). The accuracy of the
numerical solutions obtained by Be and Ke is again satisfactory. The convergence rate of the
numerical solutions obtained by 81 and Kl is very slow in this example. It should be noted
once again that all of the numerical solutions approach the exact solution as the number
of elements increases.

The third example is the same as the second one except that the slenderness ratio of
the beam is 5. It is pointed out by Goto et al. (1990) that the difference between the
numerical solutions obtained by the finite strain theory and those by the small strain theory
does not appear remarkably when the slenderness ratio of the beam is higher than 10. A
comparison between the analytical solutions obtained by both the finite strain theory and
the small strain theory, and the present numerical solutions is made in Fig. 4. The solid line
indicates the solutions of the finite strain theory and the dashed line the solution of the
small strain theory. The present numerical solutions are obtained by using 40 elements. In
this case all of the finite element solutions converge to the same value within four digits. It
is noted that the converged solutions coincide with the solutions obtained by the finite
strain theory not by the small strain theory. This fact agrees with the present theoretical
conclusion.

5.3. Cantilever subjected to axial force
In the final example, we consider the cantilever beam subjected to an increasing

compressive end force together with a small end moment, as shown in Fig. 5. The slenderness
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Fig, 5. Convergence of FE solutions of a cantilever beam subjected to axial force; (a) solutions by
£, and K" (b) solutions by £, and Kl'

ratio ofthe beam is 4. In this model, there exists an obvious difference between the solutions
obtained by the finite strain theory and those by the small strain theory. According to Goto
et al. (1990), the buckling load derived by the finite strain theory is Fxt 2lEI = 3.048 while
that by the small strain theory is i:~12JEf "'" 2.467. The converging processes of the solutions
obtained by £1 and Kh and 81 and Kl are shown in Figs 5(a) and 5(b), respectively. When
the small numbers ofelements are used, the numerical results are not satisfactory especially
in the range of the post~buckling. The buckling load, however, can be obtained precisely
by using the small numbers of elements when 6) and "I are employed. A comparison
between the analytical solutions obtained by both the finite strain theQry and the small
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Fig. 6. Comparison between analytical and converged solutions for a cantilever beam subjected to
axial force.

strain theory, and the converged solutions is made in Fig. 6. The solid line indicates the
solutions of the finite strain theory and the dashed line the solution of the small strain
theory. The converged solutions are obtained by using 40 elements so that all of the finite
element solutions converge to the same value within four digits. It is shown that the
converged solutions coincide with the solutions obtained by the finite strain theory not by
the small strain theory. This numerical result shows once again the validity of the present
theoretical study.

6. CONCLUDING REMARKS

The accuracy of the corotational formulation for planar Bernoulli-Euler's beam has
been studied on the basis of the method proposed herein. The accuracy of numerical
solutions depends on the residual forces used. Therefore comparison between the residual
forces obtained by the corotational formulation and the exact one has been made. This
comparison is possible without deriving the explicit forms of the residual forces. It is shown
that the comparison between the approximated strains in the locally convected coordinates
and the exact strains in the fixed global coordinates is enough to study the accuracy of the
corotational formulation. Although a small strain assumption is used from the outset in
the corotational formulation, the nonlinear terms are included in the transformation of
coordinate system. These nonlinear terms play an important role in improving the accuracy
of numerical solutions.

The effects of the local coordinate system on the accuracy of numerical solutions have
been discussed. In the case of using the secant coordinate system, the accuracy of the
corotational formulation is the same as that of the forward difference. It has been concluded
that the numerical solutions obtained by the corotational formulation approach the solu
tions by a theory of finite strains with finite displacements as the number of elements
increases. This conclusion disagrees with earlier conclusions derived by Goto et al. (1987).
The numerical examples show the validity of the present theoretical results.
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